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E X A C T  M U L T I D I M E N S I O N A L  S O L U T I O N S  O F  T H E  

N O N L I N E A R  D I F F U S I O N  E Q U A T I O N  

V. V. Puklmachev UDC 517.946 

Exact nonnegative solutions are obtained for the nonlinear diffusion equation u t = A(um),  where A is the Laplacian 

in R n, n >__ 2, and m is a positive constant. The solutions form an n-parameter family and correspond to initial data as a finite 

or an infinite measure. When 0 < m < 1, its support is a hyperplane in R n, while for m > 1 the initial measure is 

concentrated in a domain bounded by a second-order surface in R t, l < n. The solutions generalize the known source-type 

solutions for the porous media equation and fast diffusion equation, but differ from them in that they are not self-similar. 

Examples of "nonsymmetric" exact solutions for the equation u t = h In u with initial data of  measure are presented. The 

properties of their symmetrization with time are discussed. 

1. Let us consider the nonnegative solutions u(x, t) of the Cauchy problem 

ut = A ( u m ) ,  z = ( z x , . . . , z , )  E R",  t > 0; (1.1) 

u(z ,O)  = Uo(Z), z E R'*, (1.2) 

where A is the Laplacian with respect to variables x I . . . . .  Xn; m = const > 0; and Uo(X) is a specified nonnegative function. 

Equation (1. I), where t stands for time, and the space dimension is n < 3, arises in many applications. In particular, it 

describes the process of diffusion (thermal conduction) in a medium, whose diffusion coefficient (thermal conductivity) is a 

power function of concentration (temperature). 

If  m > 1, Eq. (1.1) is conventionally called the porous media equation. In this case the function u is identified with 

the density of  a polytropic gas during its isentropic filtration through a uniform porous medium. The porous media equation 

is characterized by finiteness of  the velocity with which disturbances propagate over the zero background [1], which markedly 

distinguishes it from the linear equation of heat conduction (m = 1). This occurs when the support of function u o does not 

coincide with the full space R n. In this case problem (1.1), (1.2) has no classical solution. Extensive literature has been devoted 

to investigation of the generalized solutions of the problem (see, for example, [2] and the references there). 

If  0 < m < 1, Eq. (1.1) is called the fast diffusion equation. In particular, equations of this type appear in plasma 

physics and physics of semiconductors. The vanishing of nonnegative solution of the Cauchy problem over a finite time [3] 

is characteristic of the fast diffusion equation (see also [4] and references there). 

2. We assume below that n _> 2. Let us first consider problem (I.1), (1.2) for m > 1. Of special interest among its 

solutions are those of source type, which correspond to initial data like 

Uo = M~(x), (2.1) 

where M = const > 0, and 6(x) is the Dirac measure, and forms a one-parameter series with parameter M for fixed m and 

n. The problem (1.1), (1.2), (2.1) has been solved in [5]. The solution is self-similar and is expressed by elementary functions. 

This solution provides the generalized solution of the initial Cauchy problem (1.1) and (1.2) with the principal term of 

asymptotic expansion as t -> oo, assuming that the norm in LI(R n) of the finite function u 0 is finite and equals M [6]. In this 

case the law of mass conservation holds: 
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f u(z, t) dz = / uo(z) dz = M. 
R n R n  

(2.2) 

The uniqueness of  the solution of the problem (1.1), (1.2), (2.1) has been established in [7]. The theorem of existence and 

uniqueness of  the solution of problem (1.1), (1.2) with an arbitrary finite measure in the right-hand side of  the condition (1.2) 
has been proved there. With the exception of the above, until recently no examples of  exact solutions of  the problem (1,1), 

(1.2) with initial data of  measure have been known. An n-parameter series of the solutions is constructed below. 

3. Further construction is based on a statement following from the results of [8, 9]. Let the vector function X = (X 1, 

.... Xn) of  the variables ( = (~1 . . . . .  ~n), t form a sufficiently smooth solution of the system in the cylinder QT = {~, t : 

E fl, t E (0.T)} 

N"X, = - m ( m  - 1)- 'V~ ( [Nl -m+l )  . 
(3.1) 

Here ] N ] is the Jacobian of the matrix N with the elements Nij =/}Xi/O~j(i, j = 1 . . . . .  n). Let us assume that in the domain 
12 of the space ( the mapping x = X(~, t) is one-to-one for each t E [0, T) and that I NI > 0 for ((,  t) E QT. Then the 

formulas 

x = x ( & t ) ,  u = IN(~,t)l -~ (3.2) 

give parametric representation of the solution of Eq. (1.1). 
We shall be concerned with the construction of an exact solution of system (3.1) of the form 

Substituting (3.3) into (3.1) yields: 

Xi = a i ( t ) l} ( ( ) ,  i = 1 . . . . .  n. 

k dal OYi m ( r I  ) -'~+' 0 (A-'~+~), 
ai - ~  Yi -~k = -- m ----'----~ ai 0~--7 

i = l  i = l  

where k = 1 . . . . .  n; A = det(0Yi/O~jk). We make the unknown functions t~i(t) obey the system of equations 

dal da,~ 2m ( l ~ a i ) - m + l  
a l - ~ - "  . . . . .  a,~ dt = m ~ l  i=1 

Then the relations connecting the functions t~i(t) and Yi(~) will be satisfied identically, if we set 

(3.3) 

(3.4) 

A = (C - ~ Yi2) "~1 
i----1 

(C = const > 0). The functions Yi in this case may be chosen with a high degree of arbitrariness; however, their dependence 

on ~ in itself is of  no particular interest, since to find the solution u(x, t) of Eq. (1. I) it suffices to know [ N [ as a function 

of x = X(/j, t) and t. Using Eqs. (3.2) and (3.3), and the expression of A in terms of Yi, we find: 

i=1 i=1 02  ] 

Here the functions cq(t) are determined from the system (3.4). Below we will restrict our consideration to nonnegative solutions 

of  the system, which guarantees nonnegativity of  the function u(x, t). 
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Equation (3.5) prescribes the solution of Eq. (1.1) inside the ellipsoid En(t ) with center at the origin and semiaxes 

C1/2t~i(t) (i = 1 . . . . .  n). Continuing the function u(x, t) by zero into the exterior of  En(t ), we obtain a generalized solution of 

Eq. (1.1) defined over all space. 

The system (3.4) possesses n - 1  first integrals 

2 2 a j  = a,~ + 7j,  J = 1 , . . . ,  n - 1, (3.6) 

where -},j are constants. We will consider all values of ~j to be nonnegative, which enables us to construct a solution of the 

system defined for any t > 0 and such that an(0) = 0. Moreover, without loss of  generality one may assume that 

7,,-1 < 7,,-2 < ---  < 71. (3.7) 

Let us determine the function C~n(t) for t > 0 as the inversion of the quadrature 

c~n n - I  m - I  2rot 

0 j = l  

(3.8) 

and the values aj(j = 1 . . . . .  n -  1) as positive roots of Eqs. (3.6). Then the set of  functions oq(t) . . . . .  C~n(t) forms the solution 

of the Cauchy problem 

aj(O) = 3,~/2 for j = 1 . . . .  ,n  - 1; an(O) = 0 

for the system (3.4). 

Let us assume that all inequalities (3.7) are strict, and "$n-1 > 0. In this case Eq. (3.5) determines an n-parameter 

family of solutions of Eq. (1.1). Here, according to (3.6), all semiaxes of the ellipsoid En(t) are different, and Ct/2C~n(t) is the 

smallest of  them. In view of  (3.8), the asymptotic form of the function t~ n in the limit t --- 0 is 

1 
= [2m(m + 1) ,~-a ,~71 

t -Z--  -1 ( 1-i J ) " t + o ( t ). 
j = l  

Passing to the limit t ~ 0 in the solution (3.5), we obtain 

n--1 m 1 

j=l  j=l  7j / +J 
(3.9) 

if t ---, 0. Here tS(Xn) is the Dirac measure, r+ denotes max(r, 0) and 

1 

K,n,o = 2 (1 - r/~)~-'-cr- drl. 

0 

Thus, we have constructed a solution of the Cauchy problem for the porous media equation with initial data of measure 

concentrated inside the ( n -  1)-dimensional ellipsoid En(0 ). The initial condition (3.9) is fulfilled in the sense of distributions. 

The solution of  the Cauchy problem (1.1) and (3.9) is unique within the appropriately defined class of its generalized solutions. 

This result follows from the general theorem of uniqueness [7]. 

The solution (3.5) is a far-reaching generalization of the source-type solution for the porous media equation. On the 

other hand, this solution generalizes the solution of  the equation u t = A(u 2) obtained in [10], which is quadratic in the space 

variables. 

Now let 3'n-1 = .-- = 7 n - l  = 0, but 7 n - l - 1  > 0, where 1 _< l _< n - 2 .  Then the initial distribution (1.2) 

corresponding to the solution (3.5) is a measure of  the type 

171 



n - - I - - I  . . ^  n - - / - I  2 2+( /+ l ) (m-  1) 

uo = K,n,t I"I 7j C- ~ zj 6 ( z , _ l ) . . . 6 ( z , ) ,  
j----1 j = l  + 

where 

1 

Km,t = ~2t+1 f (1  - r/2) ~---~- r/dr/ 
0 

(t2 n is the surface area of  the unit sphere in Rn). The singular support of this measure is (n - l -1 ) -d imens iona l  (we agree that 

n >_ 2). In this case the solution (3.5) itself is invariant under the rotation group in the space R l+l and therefore contains only 
n -  1 free parameters. 

Finally, if all ~'1 . . . . .  7n-1 are equal to zero, the solution (3.5) becomes invariant with respect to the complete rotation 
group in R n and transforms into the well-known solution of G. I. Barenblatt [5] corresponding to the initial data 

no = K  . . . .  1 C n ~ ) - g ( x ) .  

Here 5(x) is the delta function in R n. The solution incidentally acquires self-similarity, which is not characteristic of the 

solutions (3.5) if at least one of the constants %,j is nonzero. 
4. Let us turn to the fast diffusion equation, i.e., to Eq. (1.1), in which 0 < m < 1. Operating by analogy with 

Section 3, we will obtain a family of  solutions (1.1) of the form 

( 1 2 ~ ) - 1 (  ~ z i2~-1  (4.1) 
u = a l  C + a ~ -  ~-"~ 

i=1 i=1  

Here the functions ai(t) are again related by Eqs. (3.6), however, the dependence an(t) will differ for the cases m < 1-2/n 

and m > 1-2In. We first consider the case 

m > 1 - 2 /n  (4.2) 

(if n = 2, inequality (4.2) must be strict). Then the function Otn(t ) satisfying the condition an(0) = 0 is given by the equality 

' 7  3,n [,-1]..[ (/~ + 7j)] 1-m 2mr 
~ - - ~  1 - m 

0 j----I 

(4.3) 

In view of (4.2), the function an(t) is defined and positive for all t --- 0, while c~ n --, oo as t --, o o .  

If  all inequalities (3.7) are strict and 3%-1 > 0, then the relations (3.6), (4.1), and (4.3) determine an n-parameter 

family of solutions of the fast diffusion equation. The initial distribution in these solutions is the measure 

"-~ ~ - l / 2 r _  "-~ ~ 

j = l  j = l  

(4.4) 

where 

0 ,o  

Lm,o = 2 (1 + r/ )--l-re.  

0 

As opposed to the solutions considered in Section 3, the support of  measure (4.4) is not compact. However,  if inequality (4.2) 

is strict, then the density of  this measure concentrated at the hyperplane x n = 0 is a function of the class LI(R n -  1). In this case 

the solution (4.1) has a finite Ll(Rn)-norm for all t > 0, and the law of mass conservation (2.2) is valid for it. If  m = 1-2/n 

and n >_ 3, then the "mass" of the solution (4.1) is infinite. 
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The solution (4.1) of the fast diffusion equation with initial data of the type (4.4) corresponds to the case of  "common 

position" in space of the parameters 71 . . . . .  "Yn-l" The other extreme case, when 71 = ..- = "/n-1 = 0 ,  corresponds to the 

source-type solution (4.1). Here initial data are as follows 

where 

UO : L m n  1 C ~ ( ~ ( 2 : ) ,  

OO 

f + r / )  - 7/ dr/. L . . . .  t = ft,~ (1 2 - -r-~ ,,-1 

0 

In this case it should be assumed that inequality (4.2) is strict. In the extreme case (m = 1-2/n) the fast diffusion equation has 

no solutions of  the source type. 

If n = 2, then the general situation is represented only by the two above cases. For n > 3 intermediate cases can occur 

when % - 1  = .-. = 7n-1  = 0, but 7 n + t - t  > 0 for l E [1, n - 2 ] .  Here the solution (4.1) acquires the property of  symmetry 

with respect to rotations in the space R t+ 1, but simultaneously it loses I of the n free parameters. 

Let now the exponent m satisfy the following inequalities instead of (4.2) 

0 < m < 1 - 2 / n  

(presumably, it is possible only when n > 3). In this case Eq. (1.1) again possesses exact solutions of  the form (4.1); however, 

the dependence of  cen on t will become other than (4.3) 

co n-1  - 1 ~  2 m  t). 

an j = l  

(4.5) 

where 

oo n - - I  _ I - ~  

2 d } ~ ;  

L , I / $ , j -  ~ J 
0 j = l  

we assume for definiteness that 71 > .-- > 7n-1 > 0. Here, as before, an(0) = 0; at the same time c~i(0) = 7j t n  > 0 for 

j = 1 . . . . .  n -  1. Therefore, the initial distribution u o again has the form (4.4). However, unlike (4.2), now the solution (4.1) 

is not positive for all t > 0. From (3.6) and (4.5) it is obvious that as t --- r the function u(x, t) vanishes uniformly in x E 
R n . 

5. Consider again the solutions (3.5) of the porous media equation, but now we will not assume that all constants 7j 

in (3.6) are normegative. The initial data in such solutions are a measure with noncompact support, whose boundary is the 

surface of the second order in R/+1 with nondegenerate quadratic form, where l = 1 . . . . .  n - 2  (we infer that n _> 2). It can 

be easily proved that all such solutions fail over a finite time. Without analyzing the variety of possible consequences, we shall 

restrict our attention to examples of exact solutions of the Boussinesq equation 

Ou 0 2 0 2 (5.1) 

Equation (5.1) is a simple multidimensional model of the porous media equation. The Boussinesq equation is of 

independent significance because it describes approximately the process of planned filtration of  an incompressible liquid in 

homogeneous soil above a horizontal water table. The nonnegative function u(x, y, t) determines the level of ground water. 

One of the solutions of  Eq. (5.1) is of the form 

u = 3[z2 sin2 #(t)  - y2 cos ~ #(t)]+ (5.2) 

32 sin a 2#(t) 
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where the function t~(t) is implicitly given by the equality 

4/J - sin 4p = 3t. 

This function is monotonically increasing over the interval [0, 21r/3] from t~ = 0 to 7r/2. Here the Cauchy data are the measure 

u o  = 2~--~(za)+~(y), (5.3) 

which is concentrated at the ray x _> 0, y = 0. The free boundaries in the solution (5.2) are two half-lines y = +xtg#(t) ,  x > 

0. When t --, 2~r /3-0 ,  the function u(x, y, t) becomes infinite simultaneously at all points of  the half-plane x > 0. 

It should be noted that the solution (5.2) is self-similar (invariant with respect to the dilatation transformation x '  = 

ax, y '  = ay, u '  = a2u, where a = const > 0). This self-similarity is of another nature than in the source-type solution, since 

one of the invariants of  the transformation is the time t. 

Equation (5.1) admits another dilatation transformation t '  = bt, u '  = b - l u ,  where b = eonst > 0. Using this property, 

one can obtain from the solution (5.2) a one-parameter family of  solutions with initial data of  the type of  (5.3), where the 

coefficient 1/256 should be replaced by 1/256b. 

Another family of  exact solutions of  the Boussinesq equation corresponds to inkial data of  the form 

(7 and C are arbitrary positive constants). The free boundaries in these solutions are hyperbolas at the plane x, y. Without 

writing down these solutions, we note only that for each of them there is such t .  = t ,( 'r ,  C) that u --- oo as t ~ t . -0  at all points 

of  the half-plane x > 0 at once. 
6. It appears that apart from solutions of the type of  (5.2), the Boussinesq equation has solutions in which the function 

u is quadratic in y, but linear in x. One of the solutions is given by the formula 

u = (3A~t 1/3 + A t -1 /3z  - y2 /12t )+,  

where A = const > 0. Solution (6.1) corresponds to initial data of  the type 

(6.1) 

uo = 8" 3-112[( A z  )+]3/~ 6(Y). (6.2) 

The free boundary in this solution is parabolic. The solution itself exists for all t > 0, although the initial measure (6.2) is 

infinite. 
Comparing the solutions of  the Cauchy problems (5.3) and (6.2) for Eq. (5. I), one can observe that as t ---- oo the order 

of growth of  the density of  the initial measure concentrated at the half-axis x > 0 significantly influences the global solvability 

for t. 

There are also analogs to the solution (6.1) for the general porous media equation (1.1), but we shall not discuss them. 

7. In conclusion we consider several exact solutions of  the equation 

ut = A i n u ,  (7.1) 

which is a limiting case of  the fast diffusion equation. With n = 3 Eq. (7.1) describes the evolution of the density of an 

electron beam obeying a Maxwell distribution, while at n = 2 it describes the process of  spreading of an ultrathin liquid film 

under the action of  van der Waals forces. Moreover,  Eq. (7.1) has applications in geometry. 

Having confined our consideration to the cases n = 2 and 3, we introduce the notation x I = x, x 2 = y, x 3 = z. One 

of  the solutions of  Eq. (7.1) is the function 

2sht cht (7.2) 
u = x2sh2t + y2ch2 t . 
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The solution corresponds to the initial data 

Zr,~(z) 
uo = lY] (7.3) 

The solution (7.2) exists for all t < 0, while as t ~ oo it has the stationary limit 6 = 2(x 2 + y2) - t .  Furthermore, the estimate 

u - ~  
= O(e - t )  

holds uniformly in (x, y) E R e as t ---, r  The function fi is a unique (to within a constant multiplier) stationary solution of 

Eq. (7.1) in the plane, which is invariant under rotations. It is interesting to note that the integrals over any ring Ra, b = {x, 

y: a 2 < x 2 + y2 _< b 2} of the initial function (7.3) and of the limiting stationary solution fi coincide: 

f f  uo dx dy ] ]  ~. dx dy = 4r ln(b/a). 
r/" 

Ra,b Ra,b 

Let us consider Eq. (7.1) in a three-dimensional space. The equation has the solution 

U = 
2 sin t cos t 

z 2 +s in  2t(y 2 + z 2) " 

(7.4) 

The initial data are 

2rr~(z) (7.5) 
uo = (y2 + z2) l / i  �9 

The solution (7.4) is nonnegative in the layer R 3 x (0, v/2) and becomes zero at t = 7r/2. Along with (7.4) we shall consider 

a spherically symmetrical solution of Eq. (7.1) with the same "lifetime" 7r/2: 

fL -- 
- 2t 

x: + y 2 + z 2 

The estimate 

u - ~  
- O ( r / 2  - t )  fi 

holds uniformly in (x, y, z) E R 3 as t --, 7r/2-0. This means that the solution (7.4) can become symmetrized by the time it 

vanishes. It is noteworthy that in this case the integrals of the initial functions (7.5) and u0 = U(Xl, Y, z, 0) are found to 
coincide for each sphere B a = {x, y, z : x 2 + y2 + z 2 < a 2} 

f f  uo dxdydz  = ] / /  d zdydz  = 4rr2a. rio 

Ba B,~ 

Remark:  The results of the present paper were reported at Summer Workshop on Nonlinear Analysis (Keyo University, 

Yokohama; July, 1993). When the manuscript was read for publication, the author learned that close results were obtained in 

[11] and in the manuscripts of E. R. Kosygina and V. A. Galaktionov submitted to Zhurnal Vychislitel'noi Matematiki i 

Matematicheskoi Fiziki (Journal of Computational Mathematics and Mathematical Physics) and Proceedings of the Royal 
Society of Edinburgh. 

The author is thankful to E. R. Kosygina and V. A. Galaktionov for the opportunity to review their unpublished results. 

The author also thanks A. A. Kalashnikov and J. R. King for stimulating discussions. 
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